Location based learning of user behavior for proactive recommender systems in car comfort functions
نویسندگان
چکیده
In-car comfort functions decrease driving stress and therefore increase safety. Drivers typically do not use all available comfort functions optimally, if at all, in every situation they would offer a substantial increase in comfort. Automating such functions as proactive recommender systems would exploit the full potential for decreasing driver stress. Because comfort functions are highly dependent on the driver’s habits, learning the individual user behavior is necessary. We propose a probabilistic method for modelling and predicting location dependent user behavior of comfort function activations. The model applies second-order uncertainty to evaluate the certainty about inferred parameter values and it deals with novelty and decaying observations explicitly. The results of this study show that the use of probabilistic models for learning location based user behavior in car comfort functions is a promising technique and gives reason to further investigate this area of studies.
منابع مشابه
A social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملImproving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کامل